Abstract

The tilapia (Orechromis niloticus) surimi gels were prepared with high hydrostatic pressure (0, 100, 200, 300, and 400 MPa for 15 min) treatments to investigate the changes in water-holding capacity, color, gel strength, microstructure, texture, and proteins of the gels. Compared it with cooked gel (40°C/30 min + 90°C/30 min). The whiteness of heat-induced and HHP-induced gels were significant (p < .05) higher than that of untreated samples. The gels formed by pressurization were dense and flexible, and formed by cross-linking based on hydrogen bonding. SDS-PAGE patterns showed no major change in the actin and tropomyosin protein profiles of gels induced by HHP-300. Raman spectroscopy confirmed disulfide bonds played an important role in gel formation. A lower intensity ratio observed in HHP-induced protein supported the tyrosine residues involved in hydrogen bond formation. The changes of secondary structure suggested decreased α-helix content and increased β-sheet.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.