Abstract

Abstract High hydrostatic pressure (HHP, 600 MPa/1 min) and high temperature short time (HTST, 110 °C/8.6 s) treatments of mango nectars were comparatively evaluated by examining their effects on antioxidant activity, antioxidant compounds, color, and browning degree (BD) immediately after treatments and during storage of 16 weeks at 4 and 25 °C. Steam blanching was used prior to HHP and HTST to inactive endogenous enzymes. Results showed that antioxidant capacity (FRAP assay), L -ascorbic acid, sodium erythorbate, total phenols, total carotenoids, the redness ( a *), the yellowness ( b *), and BD changed insignificant after HHP or HTST treatment. The lightness ( L *) exhibited a significant decrease in HTST-treated mango nectars, while no significant changes in HHP-treated samples. After 16 weeks storage at 4 and 25 °C, there were significant changes in antioxidant activity, antioxidant compounds, color, and BD of mango nectars, whereas differences between HHP- and HTST-treated samples were not significant except for the decrease in L -ascorbic acid and sodium erythorbate, which was more pronounced in HHP-treated samples. Kinetic data of changes in L -ascorbic acid, sodium erythorbate, total phenols, and total carotenoids during storage fitted well into a combined model for both HHP- and HTST-treated samples. Industrial relevance Mango ( Mangifera indica L.) is one of the important tropical fruits, and its processed products are of high commercial and economic importance. This research paper presents a comparison on HHP- and HTST-treated mango nectars, and also provides information about storage stability of antioxidant activity, antioxidant compounds, and color of mango nectars. The available data would provide technical support for the evaluation and application of HHP or HTST in the mango nectar industry, and also for the establishment of criteria for commercial production of high quality mango nectars with safety requirements.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.