Abstract

Cabbage is one of the most economical cooked vegetables in terms of its relatively low price and high nutritional value. It is rich in dietary fiber, multivitamins, and a variety of anti-oxidants. In this study, we compared the effects of high-hydrostatic pressure (HHP) and high-pressure homogenization (HPH) treatments on changes in composition and physiological functions of cabbage dietary fiber. The total dietary fiber content (36.06 ± 1.65%) and nitrite ion adsorption capacity (2.37 ± 0.01 μmol·g-1 ) of HHP-treated cabbage powder were higher than those of untreated cabbage powder. The soluble dietary fiber content (36.18 ± 0.89%) and the emulsifying activity (36.18 ± 0.89%) and emulsifying stability (47.88 ± 4.35%) of HPH-treated cabbage powder were higher than those of untreated cabbage powders. The significant reduction in particle size induced by the high-pressure treatments caused differences in the properties of the treated and untreated cabbage powder samples. Scanning electronic microscopy analysis revealed that the microstructure of the HPH-treated cabbage powder changed from patches to fine granules with concave-convex markings on the surface, and that the surface area was significantly higher than that of the untreated cabbage powder. The high-pressure-treated cabbage powder has good homogeneity sensory properties after rehydration. Moreover, the changes in the properties of cabbage powder induced by the high-pressure treatments caused the cholesterol adsorption capacity and glucose dialysis retardation index of the treated cabbage powders to be higher than those of the untreated cabbage powder. In summary, high-pressure processing and micronization of cabbage can render it a multifunctional source of dietary fiber. We believe that this study provides a new method for processing and using leftover vegetables. © 2022 Society of Chemical Industry.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call