Abstract

Additive manufacturing (AM) has gained significant attention in recent years owing to its ability to fabricate intricate shapes and structures that are often challenging or unattainable using conventional manufacturing techniques. This high-quality development trend entails higher requirements for the structural design of 3D printers. In this study, polylactic acid (PLA) and acrylonitrile butadiene styrene (ABS) filaments were fed through a heated extrusion nozzle, which melted the material and deposited it onto a build platform. This study's objectives are high-gravitational material extrusion (HG-MEX) systems development, analyzing the high gravity influences on the flow behavior of materials during extrusion, and understanding the effects of gravitational on material flow and overall extrusion performance. HG-MEX systems have great potential for addressing various challenges in additive manufacturing, such as precise manufacturing. The highlight of the progress is that we developed an HG-MEX system and applied surface science to material extrusion in different gravity. We established a system and obtained results on different gravity, we analyzed the analogy between different gravity phenomena. We analyzed the interplay between the behavior of the fabricated parts and gravity. We analyzed high gravity effects on extrusion processes. The results confirmed the characteristics and feasibility of the developed system. The results suggest that a material extrusion line operating under 15 G conditions resulted in better printing quality compared to one operating under 1 G conditions. This observation implies that high gravity had a positive effect on the extrusion process, leading to improved material extrusion performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call