Abstract

Simple SummaryThe rumen is well known as a natural bioreactor for highly efficient degradation of fibers, and rumen microbes play an important role on fiber degradation. Carbohydrates are fermented by a variety of bacteria in the rumen and transformed into volatile fatty acids (VFAs) by the corresponding enzymes. However, the content of forage in the diet affects the metabolism of cellulose degradation and VFA production. Therefore, we combine metabolism and metagenomics to explore the effects of High forage/concentrate diets and sampling time on enzymes and microorganisms involved in the metabolism of fiber and VFA in cow rumen. This study showed that propionate formation via the succinic pathway, in which succinate CoA synthetase (EC 6.2.1.5) and propionyl CoA carboxylase (EC 2.8.3.1) were key enzymes. Butyrate formation via the succinic pathway, in which phosphate butyryltransferase (EC 2.3.1.19), butyrate kinase (EC 2.7.2.7) and pyruvate ferredoxin oxidoreductase (EC 1.2.7.1) are the important enzymes. The microorganisms are mainly affected by diet and sampling time.The objectives of this study were to investigate the difference in the mechanism of VFAs production combined with macrogenome technology under different forage-to-concentrate ratios and sampling times. Six ruminally cannulated Holstein cows were used in a randomized complete block design. The high forage (HF) and high concentrate (HC) diets contained 70 and 35% dietary forage, respectively. The results showed that pH was affected by sampling time, at 4 h after feeding had lower value. Excepted for acetate, the VFAs was increased with forage decreased. Propionate formation via the succinic pathway, in which succinate CoA synthetase (EC 6.2.1.5) and propionyl CoA carboxylase (EC 2.8.3.1) were key enzymes, and significantly higher in HC treatment than in HF treatment, Selenomonas, Ruminobacter, Prevotella, and Clostridium were the main microorganism that encodes these key enzymes. Butyrate formation via the succinic pathway, in which phosphate butyryltransferase (EC 2.3.1.19), butyrate kinase (EC 2.7.2.7) and pyruvate ferredoxin oxidoreductase (EC 1.2.7.1) are the important enzymes, Prevotella and Bacteroides played important role in encodes these key enzymes. This research gave a further explanation on the metabolic pathways of VFAs, and microorganisms involved in VFAs production under different F:C ration, which could further reveal integrative information of rumen function.

Highlights

  • The rumen is well known as a natural bioreactor for highly efficient degradation of fibers, and rumen microbes play an important role on fiber degradation [1], which provides energy and proteins to the host by producing volatile fatty acids and bacterial proteins through anaerobic fermentation [2]

  • The content of propionate was significantly higher in the high concentrate (HC) diet and after feeding, and the propionate, pH, and A/P were affected by the interaction of feed and time

  • We investigated the fermentation parameters, the amount of total volatile fatty acids (TVFAs) produced is relatively low of high forage (HF) treatment, the fermentation efficiency of forage in the rumen is relatively low

Read more

Summary

Introduction

The rumen is well known as a natural bioreactor for highly efficient degradation of fibers, and rumen microbes play an important role on fiber degradation [1], which provides energy and proteins to the host by producing volatile fatty acids and bacterial proteins through anaerobic fermentation [2]. Carbohydrates are fermented by a variety of bacteria and enzymes in the rumen, transformed into volatile fatty acids (VFAs) [3,4]. These processes are all performed through a series actions of rumen microbial enzymes.

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call