Abstract

Methadone maintenance at appropriate doses can effectively reduce cocaine abuse in heroin-dependent individuals. In the present studies, we investigated the effect of high-dose methadone maintenance cocaine conditioned place preference (CPP) and cocaine intravenous self-administration. Rats implanted with methadone-filled osmotic mini-pumps (20 and 55 mg/kg/day, SC) and conditioned with cocaine (1, 5, and 20 mg/kg, i.p.) did not express cocaine CPP. Similarly, rats implanted with methadone pumps (55 mg/kg/day) after cocaine conditioning (20 mg/kg) displayed neither spontaneous nor cocaine-precipitated (20 mg/kg, i.p.) CPP. In contrast, methadone maintenance (30 and 55 mg/kg/day, SC) did not alter the intravenous self-administration (continuous schedule of reinforcement) of various doses of cocaine (0.1, 0.5, and 2.0 mg/kg/inf). To explore neuropharmacological interactions between methadone maintenance and cocaine conditioning, we quantitatively measured mRNA levels of mu-opioid receptor (MOR) and proopiomelanocortin genes 10 days after methadone maintenance. MOR mRNA levels in both the nucleus accumbens core and frontal cortex were significantly elevated in rats exposed to cocaine during CPP conditioning. However, upregulation of MOR mRNA levels in the nucleus accumbens core were reduced by methadone maintenance in a dose-dependent manner. In conclusion, our results suggest that high-dose methadone maintenance does not alter the direct reinforcing effect of cocaine, but blocks spontaneous and cocaine-precipitated cocaine-seeking, possibly by preventing MOR alterations in the nucleus accumbens core induced by cocaine conditioning.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call