Abstract

Previous reports have shown a differential effect of high-density lipoprotein (HDL) particles which contain apolipoprotein (apo) A-I without apo A-II (Lp A-I) and particles containing both apo A-I and apo A-II (Lp A-I/A-II) on cholesterol efflux from the mouse adipocyte cell line Obl771, with Lp A-I and Lp A-I/A-II being active and inactive cholesterol efflux promotors, respectively. The present study was conducted to examine the roles of these two populations of apo-specific HDL particles on reverse cholesterol transport from cholesterol-loaded human skin fibroblasts and bovine aortic endothelial cells. The ability of HDL particles to remove intracellular cholesterol was tested by measuring depletion of the substrate pool for acyl-CoA: cholesterol acyltransferase (ACAT) and efflux of newly synthesized cholesterol, while removal of plasma membrane cholesterol was assessed by measuring efflux of [ 3H]cholesterol from prelabeled cells. Lp A-I and Lp A-I/A-II isolated from HDL 2, HDL 3 or plasma by immunoaffinity techniques each decreased esterification of cholesterol by both fibroblasts and endothelial cells. A mixture of Lp A-I and Lp A-I/A-II isolated from HDL 3 decreased cholesterol esterification by fibroblasts in an additive manner, thus demonstrating that Lp A-I/A-II did not inhibit Lp A-I-mediated cholesterol efflux. Both Lp A-I and Lp A-I/A-II promoted efflux of sterol newly synthesized by fibroblasts, and no significant differences were observed between the apo-specific particles. Apo-specific particles were also similarly effective at preventing the accumulation of LDL-derived cholesterol in cholesterol-depleted fibroblasts. Efflux of [ 3H]cholesterol from plasma membranes was stimulated to similar extents by Lp A-I and Lp A-I/A-II isolated from either HDL 2, HDL 3 or plasma. Thus, the apo-specific HDL particles Lp A-I and Lp A-I/A-II are both effective promoters of cholesterol efflux from fibroblasts and aortic endothelial cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.