Abstract
A high-concentration in-situ phosphorus-doping technique for silicon low-temperature epitaxial growth with Si 2H 6 has been developed. Growth temperature has an impact on the crystal quality and on lattice strain of phosphorus-doped silicon layers. Resistivity, micro-Raman spectroscopy, and high-resolution X-ray diffraction indicated that good crystal quality was achieved at a growth temperature of 525 °C. On the other hand, growth pressure has little influence on crystal quality or on lattice strain except for surface morphology. By optimizing epitaxial growth conditions, an extremely high concentration of phosphorous doping was achieved without a high-temperature activation annealing, and the resultant good crystal quality of the phosphorus-doped silicon layer gave a very low resistivity. Accordingly, the high-concentration in-situ phosphorus doping is a powerful technique to fabricate future ultra-high-speed SiGe HBTs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.