Abstract
In this paper, we investigate the effects of heterogeneous mobility on rate adaptation and user scheduling in cellular networks with hybrid automatic repeat request (HARQ). To this end, we first show the performance tradeoff between two extreme scheduling criteria: retransmission-oriented scheduling (ROS) and mixed scheduling (MS) criteria over time-correlated Rayleigh fading channels. Then, we propose an ROS-based joint rate adaptation and user scheduling (JRAUS) policy for cellular networks and compare it with the conventional and reference JRAUS policies. We also evaluate the system-level performance of the proposed ROS-based JRAUS policy in various user distribution and mobility scenarios. In particular, in an asymmetric user distribution and heterogeneous mobility scenario, which is the most general one in practice, the proposed JRUAS policy yields a throughput gain of 49% and a fairness gain of 155% over the conventional JRAUS policies. In this paper, we find that the rate adaptation is significant not only in a single point-to-point link but in multiuser systems with heterogeneous mobility as well.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.