Abstract

It has been widely accepted that costal cartilage cells (CCs) have more excellent initial proliferation capacity than articular cartilage cells. Biodegradable synthetic polymer poly(lactic-co-glycolic acid) (PLGA) was approved by Food and Drug Administration. Hesperidin has antifungal, antiviral, antioxidant, anti-inflammatory, and anticarcinogenic properties. Hesperidin loaded (0, 3, 5, and 10 wt.%) PLGA scaffolds were prepared and in vitro and in vivo properties were characterized. Scaffolds were seeded with CCs isolated from rabbit, which were kept in culture to harvest for histological analysis. Hesperidin/PLGA scaffolds were also implanted in nude mice for 7 and 28 days. Assays of 2-(2-methoxy-4-nitrophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfo-phenyl)-2H-tetrazolium, monosodium salt (WST), and scanning electron microscope were carried out to evaluate attachment and proliferation of CCs in hesperidin/PLGA scaffolds. Glycosaminoglycan assay was performed to confirm the effects of hesperidin on extracellular matrix formation. Reverse-transcriptase polymerase chain reaction was carried out to confirm the expression of the specific genes for CCs. In these results, we demonstrated that cell attachment and proliferation on hesperidin/PLGA scaffolds were more excellent compared with on PLGA scaffold. Specially, 5 wt.% hesperidin/PLGA scaffold represented the best results among other scaffolds. Thus, 5 wt.% hesperidin/PLGA scaffold will be applicable to tissue engineering cartilage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.