Abstract
The larvae of the black soldier fly, Hermetia illucens, are now attracting attention and becoming promising sources for aquafeed ingredient due to the nutritious substance. However, the introduction of a novel ingredient into the recipe may have unpredictable effects on the innate immune function and gut bacteria composition of crustaceans. Therefore, the present study aimed to evaluate how dietary black soldier fly larvae meal (BSFLM) affected the antioxidant ability, innate immunity and gut microbiome of shrimp (Litopenaeus vannamei) fed with a practical diet, including the gene expression of Toll and immunodeficiency (IMD) pathways. Six experimental diets were formulated by replacing gradient levels of fish meal (0 %, 10 %, 20 %, 30 %, 40 % and 50 %) based on a commercial shrimp diet. Four replicates of shrimp were fed different diets three times daily for 60 days. Growth performance linearly decreased with increasing BSFLM inclusion. Results of antioxidative enzyme activities and gene expression suggested that low dietary BSFLM levels activated the antioxidant capacity of shrimp, while dietary BSFLM levels up to 100 g/kg may induce oxidative stress and inhibit glutathione peroxidase activity. Although traf6, toll1, dorsal and relish were significantly upregulated in different BSFLM groups, the expression of tak1 was significantly downregulated in groups containing BSFLM, implying the immune susceptibility may be weakened. Gut flora analysis indicated dietary BSFLM altered both beneficial and opportunistic pathogenic bacterial abundance, with low levels of dietary BSFLM increased the abundance of bacteria that may contribute to carbohydrate utilization, while high levels of dietary BSFLM may cause intestinal disease and low intestinal immune response. To conclude, 60–80 g/kg of dietary BSFLM showed no adverse effects on the growth, antioxidant capacity and gut flora of shrimp, which was the adequate level in shrimp diet. While 100 g/kg dietary BSFLM may induce oxidative stress and potentially weaken the innate immunity of shrimp.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Comparative Biochemistry and Physiology Part D: Genomics and Proteomics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.