Abstract

Most models of mating system evolution predict mixed mating to be unstable, although it is commonly reported from nature. Ecological interactions with mutualistic pollinators can help account for this discrepancy, but antagonists such as herbivores are also likely to play a role. In addition, inbreeding can alter ecological interactions and directly affect selfing rates, which may also contribute to maintaining mating system variation. We explored herbivore and inbreeding effects on pollinator behavior and selfing rates in Mimulus guttatus. First, individual spittlebug (Philaenus spumarius) herbivores were applied to native plants in two populations. Spittlebugs reduced flower size, increased anther-stigma distance, and increased selfing rates. A second experiment factorially crossed spittlebug treatment with inbreeding history (self- vs. cross-fertilized), using potted plants in arrays. Spittlebugs did not affect pollinator behavior, but they reduced flower size and nearly doubled the selfing rate. Inbreeding reduced the frequency of pollinator visits and increased flower-handling time, and this may be the first report that inbreeding affects pollinator behavior. Selfing rates of inbred plants were reduced by one half, which may reflect early inbreeding depression or altered pollinator behavior. The contrasting effects of herbivory and inbreeding on selfing rates may help maintain mating system variation in M. guttatus.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call