Abstract

The liver coordinates the systemic response to nutrient deprivation and availability by producing glucose from gluconeogenesis during fasting and synthesizing lipids via de novo lipogenesis (DNL) when carbohydrates are abundant. Mitochondrial pyruvate metabolism is thought to play important roles in both gluconeogenesis and DNL. We examined the effects of hepatocyte-specific mitochondrial pyruvate carrier (MPC) deletion on the fasting-refeeding response. Rates of DNL during refeeding were impaired by hepatocyte MPC deletion, but this did not reduce intrahepatic lipid content. During fasting, glycerol is converted to glucose by two pathways; a direct cytosolic pathway and an indirect mitochondrial pathway requiring the MPC. Hepatocyte MPC deletion reduced the incorporation of 13C-glycerol into TCA cycle metabolites, but not into new glucose. Furthermore, suppression of glycerol and alanine metabolism did not affect glucose concentrations in fasted hepatocyte-specific MPC-deficient mice, suggesting multiple layers of redundancy in glycemic control in mice.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.