Abstract

Evidence is presented that heparin pretreatment produces protective effects on myocardial tissue distinct from its anticoagulant activity. The present study examines the ability of heparin sulfate and N-acetyl heparin (a derivative of heparin devoid of anticoagulant effects) to protect the heart from injury associated with global ischemia and reperfusion. Male New Zealand White rabbits were administered either heparin sulfate (n = 7, 300 U/kg i.v.), N-acetyl heparin (n = 6, 1.73 mg/kg i.v.), or vehicle (n = 6). Two hours after treatment, the hearts were removed, perfused on a Langendorff apparatus, and subjected to 30 minutes of global ischemia, followed by 45 minutes of reperfusion. During reperfusion, creatine kinase concentrations in the coronary sinus effluent were greater in hearts from vehicle-treated rabbits compared with hearts from N-acetyl heparin-treated and heparin-treated rabbits. Left ventricular end-diastolic pressure after 45 minutes of reperfusion in the vehicle-treated group was 64 +/- 15 mm Hg compared with 17 +/- 4 and 10 +/- 3 mm Hg in the heparin-pretreated and N-acetyl heparin-pretreated groups, respectively. Heparin, but not N-acetyl heparin, increased the activated partial thromboplastin time, consistent with its known anticoagulant action. Heparin and N-acetyl heparin inhibited complement-mediated erythrocyte lysis in a concentration-dependent manner. The glycosaminoglycans, in contrast to r-hirudin, reduced complement activation-induced injury in the rabbit isolated heart. The results demonstrate that heparin or N-acetyl heparin, administered to the intact rabbit, protects the isolated heart from subsequent myocardial dysfunction secondary to ischemia/reperfusion. The cardioprotective effects of heparin and N-acetyl heparin are independent of an antithrombin mechanism.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.