Abstract

To explore the effects of HbJ Bangkok, HbE, HbG Taipei, and α-thalassemia HbH on the results of HbA1c assessment using ion-exchange high-performance liquid chromatography (IE-HPLC). We enrolled five patients in which the results of the IE-HPLC HbA1c assay were inconsistent with the average levels of FBG. We performed hemoglobin capillary (Hb) electrophoresis using whole-blood samples. We also sequenced the genes encoding Hb using dideoxy-mediated chain termination and analyzed HbA1c using borate affinity HPLC (BA-HPLC) and turbidimetric inhibition immunoassay (TINIA). Two patients had the HbJ Bangkok variant. Hb genotypes of these patients were β41-42 /βJ Bangkok and βN /βJ Bangkok , and the content of HbJ Bangkok was 93.9% and 52.4%, respectively. The remaining three patients had the following: HbE (βN /βE Hb genotype, 23.6% HbE content), HbG Taipei (βN /βG Taipei Hb genotype, 39.4% HbG Taipei content), and α-thalassemia HbH (6.1% HbH content, 2.8% Hb Bart's content). In the patients with β-thalassemia and HbJ Bangkok variants, the presence of the variants interfered with the results of HbA1c analyses using IE-HPLC and TINIA; in the remaining four patients, there was interference with the results of HbA1c IE-HPLC but not with the TINIA assay. There was no interference with BA-HPLC HbA1c results. HbJ Bangkok, HbE, HbG Taipei Hb, and α-thalassemia HbH disease cause varying degrees of interference with the analysis of HbA1c using IE-HPLC. In these patients, we suggest using methods free from such interference for the analysis of HbA1c and other indicators to monitor blood glucose levels.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call