Abstract
We analyzed the oxygen (O2) and carbon monoxide (CO) binding properties, autoxidation reaction rate, and FeO2 and FeCO vibrational frequencies of the H64Q mutant of sperm whale myoglobin (Mb) reconstituted with chemically modified heme cofactors possessing a variety of heme Fe electron densities (ρ(Fe)), and the results were compared with those for the previously studied native [Shibata, T. et al. J. Am. Chem. Soc. 2010, 132, 6091-6098], and H64L [Nishimura, R. et al. Inorg. Chem. 2014, 53, 1091-1099], and L29F [Nishimura, R. et al. Inorg. Chem. 2014, 53, 9156-9165] mutants in order to elucidate the effect of changes in the heme electronic structure and distal polar interaction contributing to stabilization of the Fe-bound ligand on the functional and vibrational properties of the protein. The study revealed that, as in the cases of the previously studied native protein [Shibata, T. et al. Inorg. Chem. 2012, 51, 11955-11960], the O2 affinity and autoxidation reaction rate of the H64Q mutant decreased with a decrease in ρ(Fe), as expected from the effect of a change in ρ(Fe) on the resonance between the Fe(2+)-O2 bond and Fe(3+)-O2(-)-like species in the O2 form, while the CO affinity of the protein is independent of a change in ρ(Fe). We also found that the well-known inverse correlation between the frequencies of Fe-bound CO (ν(CO)) and Fe-C (ν(FeC)) stretching [Li, X.-Y.; Spiro, T. G. J. Am. Chem. Soc. 1988, 110, 6024-6033] is affected differently by changes in ρ(Fe) and the distal polar interaction, indicating that the effects of the two electronic perturbations due to the chemical modification of a heme cofactor and the replacement of nearby amino acid residues on the resonance between the two alternative canonical forms of the FeCO fragment in the protein are slightly different from each other. These findings provide a new insight for deeper understanding of the functional regulation of the protein.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.