Abstract

Experimental aerodynamic investigations remain the subject of interest in rotorcraft community since the flow around the helicopter is dominated by complex aerodynamics and flow interaction phenomena. The objective of this study is to determine the aerodynamic drag characteristics of helicopter horizontal tail by conducting wind tunnel tests. To fulfil the objective, three of the most common helicopter horizontal tail configurations namely Forward Stabilizer, Low-aft Stabilizer and T-tail Stabilizer, were fabricated as a simplified scaled-down wind tunnel model mated with a standard ellipsoidal fuselage. The test wind speed for this experimental work was 30 m/s, determined from Reynolds sweep, which was corresponding to Reynolds number of 2.8 x 105. Wind tunnel tests were performed at variations angle of attack ranging from -15O to 15O with 5O interval. The results tell that at zero yaw and zero pitch angles, Forward Stabilizer contributed the least drag coefficient at 0.277 implying the configuration could be the best for cruising flight segment. Contrarily to T-tail Stabilizer, this configuration contributed the most drag coefficient at 0.303, which was 9% higher than the former. The T-tail Stabilizer was also found to be the most sensitive to the change of angle of attack where the drag was drastically increased up to 131.35% at -15O angle of attack compares to at zero angle of attack. These findings had successfully testified that the type of stabilizer configuration does significantly influencing the aerodynamic drag characteristics of helicopter. Subsequently, the selection of stabilizer must wisely be done to have the best aerodynamic efficiency and performance for the helicopter.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.