Abstract

Understanding the behaviour of oxide-dispersion strengthened (ODS) ferritic martensitic steels under irradiation is of prime importance in the design of future fusion reactors. Although changes in grain boundary chemistry during irradiation can significantly affect fracture strength, little is known on the behaviour of grain boundaries in ODS steels. Here, the effect of heavy-ion implantation at 500°C on grain boundary chemistry in a model ODS Fe–12wt.% Cr alloy was investigated using atom-probe tomography (APT) and analytical scanning-transmission electron microscopy ((S)TEM) techniques. While chromium and carbon segregation at grain boundaries is found in annealed alloys before irradiation, the three-dimensional APT reconstructions and TEM observations after irradiation reveal a complex distribution of Cr segregation and depletion at grain boundaries of varying character.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.