Abstract
In high-altitude Andean grasslands (páramo), overgrazing leads to alterations in both vegetation and microclimate. These alterations need to be identified to devise land management strategies that will preserve and enhance ecosystem processes. To elucidate this issue, we designed an overgrazing experiment: we selected two plots covered with native grass (pajonal), in one of which we mowed to the ground surface. We left the second plot undisturbed to serve as a control. For both plots, we continuously monitored albedo and ancillary energetic components to generate quarterly and yearly comparisons for the following parameters: (a) impacts on albedo and resilience of grass; (b) radiative forcing of albedo; and (c) land surface temperature feedback during the recovery period. In the first quarter following removal, when the soil was covered with light litter, median albedo increased 38.81% (0.16 ± 0.02), then began a gradual decrease, which continued until its full recovery 1.75 years later (0.10 ± 0.01). During the first year of the experiment, a strong mean negative instantaneous radiative forcing was observed (−7.08 ± 6.03 Wm−2), signifying a reduction in net shortwave energy. This forcing returned to normal, pre-intervention conditions (−0.55 ± 0.97 Wm−2) after 1.75 years, equal to the energetic recovery period of the grass. Both the amount (from 133.0 ± 44.72 to 119.67 ± 39.30 Wm−2) and the partitioning (net shortwave decreased 5%; net longwave increased 9.7%) of net energy were altered after removal, evidence of cooling feedback during the recovery period. This feedback indicated that the decrease in albedo (1.25%) or instantaneous radiative forcing (−4.67 Wm−2) resulted in a decrease in land surface temperature of 1 °C. Thus, our overgrazing experiment without soil destruction followed by a natural recovery time has identified the energetic recovery period for grass in the páramos; suggesting the albedo as a good indicator of grass resilience.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.