Abstract
AbstractNuclear waste can be vitrified by mixing it with glass‐forming and ‐modifying additives. The resulting feed is charged into an electric glass melter. To comprehend melting behavior of a high‐alumina melter feed, we monitored the volume expansion of pellets in response to heating at different heating rates. The feeds were prepared with different particle sizes of quartz (the major additive component) and with varied silica‐to‐fluxes ratio to investigate the glass melt viscosity effects. Also, we used additional melter feeds with additives premelted into glass frit. The volume of pellets was nearly constant at temperatures <600°C. After a short period of volume shrinkage at ~600°C‐700°C, foam generation produced massive volume expansion. The low heat conductivity of foam hinders the transfer of heat from molten glass to the reacting feed. The extent of foaming increased with faster heating and higher melt viscosity, and decreased with increasing size of quartz particles and fritting of the additives. Volume expansion data are needed for the mathematical modeling of the cold cap.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.