Abstract

The present work investigates the effects of heat treatment on friction and wear behavior of electroless Ni–B coatings at elevated temperatures. Coating is deposited on AISI 1040 steel specimens and subjected to heat treatments at 350[Formula: see text]C, 400[Formula: see text]C and 450[Formula: see text]C. Coating characterization is done using scanning electron microscope, energy dispersive X-Ray analysis and X-Ray diffraction analysis. Improvement in microhardness is observed for the heat treated deposits. Further, the effect of heat treatment on the tribological behavior of the coatings at room temperature, 100[Formula: see text]C, 300[Formula: see text]C and 500[Formula: see text]C are analyzed on a pin-on-disc setup. Heat treatment at 350[Formula: see text]C causes a significant improvement in the tribological behavior at elevated temperatures. Higher heat treatment temperatures cause deterioration in the wear resistance and coefficient of friction. The wear mechanism at 100[Formula: see text]C is observed to be predominantly adhesive along with abrasion. While at 300[Formula: see text]C, abrasive wear is seen to be the governing wear phenomenon. Formation of mechanically mixed layers is noticed at both the test temperatures of 100[Formula: see text]C and 300[Formula: see text]C for the coatings heat treated at 400[Formula: see text]C and 450[Formula: see text]C test temperature. The predominant wear mechanisms at 500[Formula: see text]C are abrasive and fatigue for as-deposited and heat treated coatings, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.