Abstract

In this study, microstructure evolution, tensile and fracture behaviors of Ti–22Al–24Nb-0.5Mo alloy processed under different heat treatment processing routes were investigated systematically. The results revealed the existence of bimodal-size microstructures of the primary O lamellae and the secondary acicular O phase. The strength and ductility of alloy specimens were optimized by accommodating the volume fractions and morphologies of the precipitates. With the increase of the solution temperature, more acicular O phase precipitated out, which led to the increase of the yield strength and ultimate tensile strength. It was observed that the acicular O phase led to the increase of the strength at elevated temperature without sacrificing plasticity. Owing to the improvement of microscopic strain homogeneity under coupled actions of stress and high temperature, the tensile fracture mode changed from quasi-cleavage to ductile transgranular creep fracture. The fracture toughness of this alloy was determined by the B2 phase and the acicular O phase. It was evaluated that the fracture toughness reduced with a higher volume fraction of the acicular O phase, which in turn affected the contiguity of the B2 matrix. Considering this, balanced strength and toughness were achieved by tailoring the relative contents of the B2 and acicular O phase.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.