Abstract

Cobalt-base Tribaloy alloys are important wear-resistant materials, especially for high-temperature applications, because of the outstanding properties of the strengthened cobalt solid solution and the hard Laves intermetallic phase that make up the alloys. The Laves intermetallic phase is so abundant (35–70 vol.%) in these alloys that its presence governs all of the material properties. Heat treatment may alter the volume fraction, the size/shape, and the distribution of the Laves phase in the microstructures as well as the phase and structure of the cobalt solid solution, thus influencing the mechanical and tribological properties of the alloys. In this work, the effects of heat treatment on two cobalt-based Tribaloy alloys, T-400 and T-200, were studied. The former is a well-known Tribaloy alloy, and the latter is a newly developed one. These two alloys were heat treated in different conditions. The phases and microstructures of the alloys before and after the heat treatments were analyzed using x-ray and scanning electron microscopy. The mechanical and tribological properties of the alloys were investigated using a nano-indentation technique and a pin-on-disc tribometer, respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call