Abstract

Effects of heat treatment (100 °C) at different moisture content (13–70 %) on the structural, gelation and digestive properties of starch in real mung bean flour (MBF) systems are investigated. The results showed that the structural destruction of the starch, the starch-lipid complexion and starch-protein interaction were promoted with increasing moisture content. The starch-protein interaction was mainly driven by hydrophobic interaction forces, leading the increase of total phase transition enthalpy. Even though starch retained ordered structure after heating at 50 %–70 % moisture, the typical pasting curve almost disappeared. The less leached amylose to construct the continuous phase, and more flexible amylopectin swollen granules dispersed in the matrix may weakened the viscoelasticity of the gels. As a result, two distinct gel textures were presented: soft solids with good water-binding capacity (below 30 %) and pasty fluids (above 40 %). Starch-lipid/protein interactions were demonstrated to retard the digestion rate of starch during MBS gelatinization according to the two-stage first-order kinetic and LOS (logarithm of the slope) models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.