Abstract

Heat stress reduces oocyte competence, thereby causing lower fertility in animals. Chronic and acute heat stresses cause extensive morphological damage in animals, but few reports have focused on the effects of chronic and acute heat stresses on ovarian function and heat shock protein (HSP) gene expression during ovarian injury. In this study, we subjected female mice to chronic and acute heat stresses; we then calculated the ovary index, examined ovary microstructure, and measured the expression of multiple HSP family genes. Chronic heat stress reduced whole-body and ovarian growth but had little effect on the ovarian index; acute heat stress did not alter whole-body or ovarian weight. Both chronic and acute heat stresses impaired ovary function by causing the dysfunction of granular cells. Small HSP genes increased rapidly after heat treatment, and members of the HSP40, HSP70, and HSP90 families were co-expressed to function in the regulation of the heat stress response. We suggest that the HSP chaperone machinery may regulate the response to heat stress in the mouse ovary.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.