Abstract

Heat stress (HS) jeopardizes human and animal health and reduces animal agriculture productivity; however, its pathophysiology is not well understood. Study objectives were to evaluate the direct effects of HS on carbohydrate and lipid metabolism. Female pigs (57 ± 5 kg body weight) were subjected to two experimental periods. During period 1, all pigs remained in thermoneutral conditions (TN; 20°C) and were ad libitum fed. During period 2, pigs were exposed to: (1) constant HS conditions (32°C) and fed ad libitum (n = 7), or (2) TN conditions and pair-fed (PFTN; n = 10) to minimize the confounding effects of dissimilar feed intake. All pigs received an intravenous glucose tolerance test (GTT) and an epinephrine challenge (EC) in period 1, and during the early and late phases of period 2. After 8 days of environmental exposure, all pigs were killed and tissue samples were collected. Despite a similar reduction in feed intake (39%), HS pigs tended to have decreased circulating nonesterified fatty acids (NEFA; 20%) and a blunted NEFA response (71%) to the EC compared to PFTN pigs. During early exposure, HS increased basal circulating C-peptide (55%) and decreased the insulinogenic index (45%) in response to the GTT. Heat-stressed pigs had a reduced T3 to T4 ratio (56%) and hepatic 5′-deiodinase activity (58%). After 8 days, HS decreased or tended to decrease the expression of genes involved in oxidative phosphorylation in liver and skeletal muscle, and ATGL in adipose tissue. In summary, HS markedly alters both lipid and carbohydrate metabolism independently of nutrient intake.

Highlights

  • Heat stress (HS) is a major environmental hazard for both humans and animals

  • No treatment differences were detected on basal plasma insulin (Fig. 1B) or the insulin to glucose ratio (Fig. 1C), but there was a treatment by day interaction on plasma C-peptide and Cpeptide to glucose ratio (P = 0.01) as they were increased on d 1 (48 and 44%, respectively) and 3 (61 and 64%, respectively) in HS pigs compared to PFTN controls, but no treatment differences were detected on d 7 (Fig. 1D and E)

  • There was a tendency for a treatment by day interaction on the insulin response to the glucose tolerance test (GTT) (P = 0.06) as HS pigs had a decreased (30%) insulin area under the curve (AUC) on days 1 compared to PFTN pigs, but the insulin response was similar between treatments on d 6 (Table 2)

Read more

Summary

Introduction

Heat stress (HS) is a major environmental hazard for both humans and animals. Heat claims more human lives than all other climatic events combined (Changnon et al 1996), with the young and elderly populations being the most susceptible (Leon and Helwig 2010). Environmental hyperthermia costs global animal agriculture several billion dollars a 2015 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.