Abstract
The effects of heat-moisture treatment whole tartary buckwheat flour (HTBF) with different contents on the pasting properties and hydration characteristics of tartary buckwheat noodle mix flour (TBMF), dough moisture distribution, cooking properties, texture properties, and flavor of noodles were studied. The results showed that the optimal additional amount of HTBF is determined to be 40%. The peak viscosity, trough viscosity, breakdown value, and final viscosity decreased significantly, and the optimal cooking time of the noodles decreased with increasing HTBF. Compared with the sample without HTBF, HTBF addition increased the water absorption of the sample and decreased its water solubility. When the amount of HTBF >30%, the content of strongly bound water in dough increased significantly; at HTBF >40%, the water absorption and cooking loss of noodles increased rapidly, and the hardness of noodles was decreased; and with HMBF addition at 60%, the chewiness, resilience, and elasticity decreased. Moreover, HMBF addition reduced the relative content of volatile alkanes, while increasing the amount of volatile alcohols. HTBF addition also elevated the content of slow-digesting starch (SDS) and resistant starch (RS) in noodles, providing noodles with better health benefits in preventing chronic diseases. These results proved the possibility of applying heat-moisture treatment grains to noodles, and they provide a theoretical basis for the research and development of staple foods with a hypoglycemic index.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.