Abstract

In this study, A- and B-type wheat starch granules (AWS and BWS) were separated and modified by heat-moisture treatment (HMT) with different moisture content (10 %–40 %). The effects of HMT on the structure characteristics and digestibility of raw/cooked AWS and BWS were investigated by SEM, FT-IR, XRD, DSC, TGA and NMR. SEM and FT-IR results showed that BWS was more sensitive to HMT than AWS. Interestingly, crystalline conformation of AWS and BWS changed from A type to A + V type after HMT, and the relative crystallinity (V-type) of starch increased to 2.7 % and 3.4 %, respectively. XRD and NMR results verified the formation of V-type crystalline structure. The resistant starch (RS) content of cooked starch was increased, especially for BWS (from 11.46 % to 28.29 %). Compared to the cooked starch, the RS content of raw AWS and BWS was affected by relative crystallinity and the size of starch granules. Furthermore, structure characteristics and digestion kinetics results indicated that the digestion rate of cooked AWS increased due to the deconstruction of starch chains, opposite to BWS (because of the more V-type crystals). The results enrich our understanding of the mechanism of digestion subjected to HMT by different grain sizes of the same wheat starch.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call