Abstract
Organic foods and crops are produced throughout the world under strict controls on growing conditions, so that synthetic chemicals, irradiation or genetic modifications are avoided. Organic starch is extracted following the same rules. Heat–moisture treatment (HMT) on starch is a physical method considered to be natural: it consists of heating starch at a temperature above its gelatinisation point with insufficient moisture (<35 %) to cause gelatinisation. Samples of organic cassava starch (with 12.8 % moisture) were dried in an oven with forced air circulation at 50 °C for 48 h and, immediately, distilled water was added to each sample until it reached the ratios of 10, 20, and 30 %, respectively. The samples were transferred into 100 mL pressure flasks, sealed tightly with a cap, and maintained in an autoclave for 60 min at 120 °C. The flasks were opened and the samples were kept in a desiccator containing anhydrous calcium chloride up to constant mass. The effects of HMT were studied using the following techniques: thermogravimetry and derivative thermogravimetry (TG/DTG), differential scanning calorimetry (DSC), rapid viscoamylographic analysis (RVA), reflectance photocolorimetry, atomic force microscopy (NC-AFM) and X-ray diffractometry (XRD). Rheological properties such as the pasting temperature (RVA) and the peak temperature (DSC) increased, while gelatinisation enthalpy ∆H (DSC) decreased. The average diameters of the granules showed no significant changes, while the degree of relative crystallinity decreased.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.