Abstract
The performance of non-line-of-sight ultraviolet (UV) scattering communication depends largely on atmospheric parameters. In this paper, we consider haze, fog, two common types of aerosols, and introduce the density and size of aerosols as variables to study the channel path loss for the UV scattering communications. We modify a Monte-Carlo based multiple-scattering model and provide fitting functions to replace the complex calculations of Mie theory, which can be used to obtain the atmospheric coefficients and phase functions for the aerosols. Simulation results reveal that, given fixed elevation angles, the channel path loss is related to both communication range, the aerosol density, and size of aerosols. For a short communication range, an increase of aerosol density can reduce the path loss, which improves the performance of UV scattering communication. However, when the communication range is extended, the path loss will fall first and then rise with density of aerosols. This phenomenon also occurs for an increase of fog drop size. The density or size of aerosols that has the lowest path loss is inversely proportional to the communication range.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.