Abstract

IntroductionChronic wounds are debilitating complications of diabetes mellitus. The present study was conducted to investigate the effect of the hair follicle stem cells (HFSCs) by polycaprolactone scaffold on the healing of incisional cutaneous wounds on streptozotocin-induced diabetic male rats. MethodsThe wound model was obtained by a biopsy punch of the skin of the animals’ back. The animals were randomly divided into five groups as follows: (1) Sham (nondiabetic, not treated), (2) Control (diabetic, not treated), (3) Scaffold (diabetic, treated with polycaprolactone nanofiber scaffold), (4) HFSCs (diabetic, treated with HFSCs), and (5) Scaffold + HFSCs (diabetic, treated with combination of Scaffold and HFSCs). The wounds were photographed in the course of the treatment and their healing rate was assessed. The samples were collected from the wound sites 7, 14, and 28 d after their development. Angiogenesis was surveyed by examining messenger RNA expression and the protein synthesis levels of vascular endothelial growth factor receptor 2 (VEGFR2) and platelet/endothelial cell adhesion molecule-1/cluster of differentiation 31. The histological changes were investigated using hematoxylin and eosin and Masson’s trichrome staining. Furthermore, the wound breaking strength was measured on the 28th day by tensiometry. ResultsThe application of the VEGFR2 as a substrate promotes the expression of CD31 in HFSCs and Scaffold + HFSCs groups compared to controls (P < 0.0001). HFSCs and scaffold also rescue the diabetes-induced dysfunction as assessed based on the parameters, such as viability, proliferation, colony formation, cellular adhesion, and chemotactic migration. HFSCs augment the levels of VEGFR2 and promote the restoration of the wound healing in diabetic groups. Furthermore, the maximum biomechanical stress significantly increased in the experimental diabetic groups (Scaffold: 1.38 ± 0.09, HFSCs: 2.13 ± 0.8, Scaffold + HFSCs: 2.38 ± 0.11) compared to the diabetes control group (1.16 ± 0.12). Using of HFSCs and scaffold on diabetic wounds leads to an accelerated wound closure, notably. ConclusionsThus, the current data showed that HFSCs and scaffold form excellent biomaterial in the treatment of diabetic wounds.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.