Abstract
The influence of landscape structure on marine ecological processes is receiving increasing attention. However, few studies conducted in coastal marine habitats have evaluated whether the effects of landscape structure on species interactions and organismal behavior are consistent across the range of an organism, over which landscape context and the strength of species interactions typically vary. American lobster (Homarus americanus) juveniles seek refuge from predators within shallow rocky habitat but make short-distance movements to forage outside of shelter. We evaluated how the patchiness of cobble habitat influences juvenile lobster movement by conducting mark-recapture experiments on lobsters placed within patchy and contiguous cobble plots in three regions of New England among which risk of predation and intraspecific shelter competition vary (Rhode Island, mid-coast Maine, and eastern Maine, USA). We also evaluated whether habitat patchiness influenced lobster colonization of plots and whether lobster fidelity to individual shelters corresponds to variability in predator abundance and conspecific density among regions. Cobble patchiness reduced rates of lobster movement in all three regions in 2004 and in two of three regions in 2005, despite large differences in landscape context among regions. Region had much larger effects on lobster colonization than did patchiness, but patchy plots were colonized at higher rates than were contiguous plots where lobster densities were highest. Fidelity to shelter was higher in regions with low conspecific density (Rhode Island and eastern Maine) than in mid-coast Maine where conspecific density is high and where unmarked lobsters often occupied shelters vacated by marked lobsters. Our results indicate that cobble patchiness influences juvenile lobster movement at small scales, but that the effects of patchiness on movement were consistent across much of the range of the American lobster despite strong regional variation in predator abundance and conspecific density.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.