Abstract
The importance of histone H1 heterogeneity and total H1 stoichiometry in chromatin has been enigmatic. Here we report a detailed characterization of the chromatin structure of cells overexpressing either H1(0) or H1c. Nucleosome spacing was found to change during cell cycle progression, and overexpression of either variant in exponentially growing cells results in a 15-base pair increase in nucleosome repeat length. H1 histones can also assemble on chromatin and influence nucleosome spacing in the absence of DNA replication. Overexpression of H1(0) and, to a lesser extent, H1c results in a decreased rate of digestion of chromatin by micrococcal nuclease. Using green fluorescent protein-tagged H1 variants, we show that micrococcal nuclease-resistant chromatin is specifically enriched in the H1(0) variant. Overexpression of H1(0) results in the appearance of a unique mononucleosome species of higher mobility on nucleoprotein gels. Domain switch mutagenesis revealed that either the N-terminal tail or the central globular domain of the H1(0) protein could independently give rise to this unique mononucleosome species. These results in part explain the differential effects of H1(0) and H1c in regulating chromatin structure and function.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.