Abstract

Sodium sulfate attack was studied on C3S mortars, along with ASTM Type I Portland cement (PC) mortars, in an attempt to independently evaluate the effect of gypsum formation on the performance. The quantity of gypsum and ettringite, as measured by differential scanning calorimetry (DSC), increased with the time of immersion in the sulfate solution. An increase in length of the mortar specimens was also registered along with the increase in the quantity of gypsum. This result suggests that the formation of gypsum could be expansive. Indeed, considerable expansion, although delayed compared to PC mortars, was observed in the C3S mortars. Thus, it can be concluded that the expansion of the PC mortars occurred due to the combined effect of gypsum and ettringite formation, while the expansion of C3S mortars occurred as a result of gypsum formation.Thaumasite formation as small inclusions was also detected in both the C3S and the PC mortars, especially in regions of high gypsum deposition. The formation of thaumasite, despite the absence of carbonate bearing minerals and low temperatures, could be because of the carbonation of the surface zones of the mortars. However, it would be speculative to attribute any expansion to the formation of thaumasite, since it was detected only in minute amounts in the microstructural investigation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call