Abstract

Abstract Effect of nozzle geometry (such as throat diameter of a barrel nozzle, exit diameter and exit divergence angle of a divergent nozzle) on HVOF thermal spraying process (thermodynamical behavior of combustion gas and spray particles) was investigated by numerical simulation and experiments with Jet Kote II system. The process changes inside the nozzle as obtained by numerical simulation studies were related to the coating properties. A NiCrAlY alloy powder was used for the experimental studies. While the throat diameter of the barrel nozzle was found to have only a slight effect on the microstructure, hardness, oxygen content and deposition efficiency of the coatings, the change in divergent section length (rather than exit diameter and exit divergence angle) had a significant effect. With increase in divergent section length of the nozzle, the amount of oxide content of the NiCrAlY coatings decreased and the deposition efficiency increased significantly. Also, with increase in the exit diameter of the divergent nozzle, the gas temperature and the degree of melting of the particle decreased. On the other hand the calculated particle velocity showed a slight increase while the gas velocity increased significantly.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call