Abstract

Normally strong winds in mountainous areas possess potential threats to the safety of vehicles travelling over the long-span bridges. Generally, decreasing the porosity of the guardrails could improve wind environment for vehicles, while the changed flow field around the bridge’s girder may weaken the structural aerodynamic stability simultaneously. To solve the two seemingly contradictory issues, such a long-span suspension bridge in mountainous areas is taken as the case study, and the guardrails are optimized with different schemes. The effects on wind environment for vehicles under normal traffic conditions are first studied by computational fluid dynamics (CFD) simulations. The further effects on the aerodynamic stability of the bridge under extreme winds are then determined by wind tunnel tests, and the observed non-divergent flutter is explainedbythe change in dynamic flow field. Results show that reducing the porosity of guardrails does improve the wind environment above the bridge deck, and the improvement on wind environment increases with the increase in angle of attack. After closing the guardrails completely, however, the girder appears non-divergent vibration different from the linear theoretical flutter when the critical wind speed is exceeded. The different post-flutter behaviors at different angles of attack are mainly related to the synchronization condition between the movement of vortex and the motion of the girder.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call