Abstract

Grain size is one of key agronomic traits associated with grain yield and grain quality. Both major quantitative trait loci GS3 and GL3.1 play a predominant role in negative regulation of grain size. In this study, a CRISPR/Cas9-mediated multiplex genome editing system was used to simultaneously edit GS3 and GL3.1 in a typical japonica rice Nipponbare. In T1 generation, we found that gs3 formed slender grain with lower chalkiness percentage, while gs3gl3.1 produced larger grain with higher chalkiness percentage. In terms of other agronomic traits, flag leaf size, grain number and grain yield of both gs3 and gs3gl3.1 mutants were affected. It is noteworthy that gs3 and gs3gl3.1 mutants both led to dramatical reduction of grain number, thereby decreased grain yield. In conclusion, these results indicated that knockout of GS3 and GL3.1 could rapidly improve grain size, but probably have some negative influences on grain quality and grain yield.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.