Abstract

The effects of growth of Brassica napus L. cv. Topas under PAR or PAR+UVA radiation was assessed with respect to sensitivity to subsequent exposure to UVB radiation. Despite the fact that growth under PAR+UVA induced minimal effects in photosystem II (PSII) photochemistry, growth under PAR+UVA inhibited the accumulation of the photosynthetic end products, sucrose and starch. This was associated with a decreased capacity for ribulose 1,5-bisphosphate (RuBP) regeneration, a decreased capacity for light- and CO 2 -saturated rates of CO2 assimilation, a decrease in the apparent quantum yield for CO2 assimilation, an over-reduction of chloroplast stroma, an increased susceptibility to the feedback effects on photosynthesis and a stimulation of glycolysis compared to controls grown under PAR. Subsequent exposure to UVB decreased the maximum Rubisco activity in leaves of both PAR- and PAR+UVA-grown plants. However, the decrease in the capacity for CO2 assimilation in PAR-grown plants exposed to UVB did not appear to be associated with limitations at the level of PSII linear electron transport, but rather with a decreased capacity for sucrose biosynthesis, limited triose-P utilization and a decreased capacity for RuBP regeneration. In contrast, the decreased capacity for CO 2 assimilation in PAR+UVA-grown plants exposed to UVB was associated with an inhibition of PSII photochemistry and a decreased supply of ATP. Thus, growth under UVA radiation appears to induce feedback-limited photosynthesis and does not enhance resistance of Brassica napus to UVB radiation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.