Abstract

InP/InGaP quantum structures with 808-nm-wavelength emissions were grown on semi-insulating GaAs (100) substrates via migration-enhanced molecular beam epitaxy. The effects of the growth conditions on the structural and optical properties of the InP/InGaP quantum structures were investigated. The scanning electron microscopy and atomic force microscopy images showed that the two-dimensional InP/InGaP quantum structures were transited to one-dimensional structures with an increasing repetition cycle. The photoluminescence spectra showed that the optical properties of the InP/InGaP quantum structures were significantly affected by various migration-enhanced epitaxy repetition numbers and growth temperatures. These results can help improve understanding of the effects of growth parameters on the structural and optical properties of InP/InGaP quantum structures for 808-nm-wavelength emissions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call