Abstract

This study focused on the expression of somatotropic axis genes in the skeletal muscle of dairy cattle. A slow-release recombinant bovine growth hormone (GH) (rbGH) formulation was administered to 5 cows, and saline solution (control) was administered to another 5 cows every 2 wk for a total of 10 wk, starting from the peak of lactation. Tissue and blood samples were collected on days 2 and 14 after each rbGH injection. As target genes insulin-like growth factor (IGF)-1, IGF-2, IGFBPs ( 1, 2, 3, 4, 5, 6), acute labile subunit (ALS), IGF-1 receptor (IGF-1R), GH receptor (GHR), and the known GHR 5′-UTR variants were selected as target genes, and their relative expression was measured using real-time polymerase chain reaction. In GH-treated cows, an increase in expression was observed for GHR 5′-UTR variant 1I on day 14 ( P < 0.05), whereas a significant down-regulation of GHR ( P < 0.05) was found after comparing values of treated cows between day 2 and day 14. However, only IGF binding proteins (BP)-5 was found to be appreciably up-regulated in GH-treated cows ( P < 0.001), which may indicate the importance of this gene in the overall molecular response to GH administration. Our study indicated that GH treatment did not affect the expression of most somatotropic axis genes, despite the marked increase in GH and IGF-1 in blood ( P < 0.001). Nor did it have a large impact on the proportion of GHR 5′-UTR variants in the skeletal muscle of lactating cows. Finally, although we observed a significant variation in the expression of some genes, it would appear that the differences between GH-treated cows and controls were not great enough to be considered as reliable indirect indicators of GH treatment in dairy cattle.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call