Abstract

Groundwater plays a significant role in influencing the growth and distribution of Robinia pseudoacacia L. plantations, with the largest planting area in the Yellow River Delta, by affecting the soil water–salt environment. This study aimed to clarify the mechanism of groundwater’s influence on the growth of R. pseudoacacia under different levels of groundwater mineralization (GWM) and groundwater depth (GWD). We simulated GWM of 0, 2 and 4 g L−1, and GWD of 0.8, 1.3 and 1.8 m. As GWM increased, soil relative water content (SRWC) and soil salt (dissolved salt) content (SSC) increased; sapling biomass (SB), stem mass (SM), leaf mass (LM), photosynthesis characteristics (maximum net photosynthetic rate (Pn), stomatal conductance (gs), intercellular CO2 concentration (Ci), transpiration rate (E) and water use efficiency (WUE)) decreased; root mass (RM), root mass ratio (RMR) and root–shoot ratio (RSR) first increased then decreased; stem mass ratio (SMR) first decreased then increased; and leaf mass ratio (LMR) increased. As GWD increased, SRWC decreased, but SSC first increased then decreased; SB, RM, RMR, RSR, and photosynthesis characteristics increased; SM and LM first increased then decreased; and SMR and LMR decreased. SRWC and SSC were negatively correlated with SB and photosynthesis characteristics. SRWC was negatively correlated with RMR and RSR, whereas it was positively correlated with LMR. SSC was negatively correlated with SMR, whereas it was positively correlated with LMR. The first principal component, including SB, RM, and photosynthesis characteristics, was related to sapling growth. The second principal component, including RMR, SMR, and RSR, was mainly related to biomass allocation. In conclusion, GWM and GWD affected the soil water and salt content, which were key factors influencing the photosynthesis and growth of R. pseudoacacia. Adjustments in biomass allocation and photosynthesis were the main adaptive strategies of R. pseudoacacia to salt, drought, and flooding stress.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call