Abstract

To determine whether solar load distribution pattern on a solid nondeformable ground surface is the product of contact erosion and is the mirror image of load distribution on a deformable surface in horses. 30 clinically normal horses. Solar load distribution was compared among 25 clinically normal horses during quasistatic loading on a solid nondeformable surface and on a highly deformable surface. Changes in solar load distribution patterns were evaluated in 5 previously pasture-maintained horses housed on a flat nondeformable surface. Changes in solar load distribution created by traditional trimming and shoeing were recorded. Unshod untrimmed horses had a 4-point (12/25, 48%) or a 3-point (13/25, 52%) wall load distribution pattern on a flat solid surface. Load distribution on a deformable ground surface was principally solar and located transversely across the central region of the foot. Ground surface contact areas on solid (24.2 +/- 8.62 cm2) and deformable (69.4 +/- 22.55 cm2) surfaces were significantly different. Maintaining unshod horses on a flat nondeformable surface resulted in a loss of the 3- and 4-point loading pattern and an increase in ground surface contact area (17.9 +/- 2.77 to 39.9 +/- 12.77 cm2). Trimming increased ground surface contact area (24.2 +/- 8.60 to 45.7 +/- 14.89 cm2). In horses, the solar surface is the primary weight-loading surface, and deformability of ground surface may have a role in foot expansion during loading. Increased surface area induced by loading on deformable surfaces, trimming, and shoeing protects the foot.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call