Abstract
It is generally perceived that ground motion duration has an effect on structural seismic response and damage, despite the neglect of current seismic codes. Based on friction SDOF systems, this paper investigates the duration effect of ground motions on seismic responses and damage of sliding bearings. Ground motions are divided into long-duration (LD) and short-duration (SD) cases, taking the significant duration of 25[Formula: see text]s as the boundary. Each case consists of natural records and spectrally equivalent artificial ground motions to decouple duration from other earthquake characteristics. Results from response history analyses implicate that duration has hardly any effect on seismic responses of the system exhibiting an approximate linear elasticity. Nevertheless, for systems with distinct frictional nonlinearity, selecting LD ground motions as seismic inputs usually leads to a conservative result. By performing incremental dynamic analysis (IDA), nonlinear systems in SD cases bear 10% higher damage risk than those in LD cases without considering the influence of temperature rise. The same is true for systems with a small friction coefficient of 0.005 when earthquakes are in the low intensity range. It was also found that damage exceedance probabilities of these small friction coefficient systems are almost unaffected by the duration as the peak ground acceleration increases to more than 0.6[Formula: see text][Formula: see text]. When the effect of temperature rise caused by friction is considered, the damage exceedance probability in LD cases is higher than SD cases. The damage probability of friction SDOF system under LD earthquake will be underestimated without considering the influence of temperature rise.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Structural Stability and Dynamics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.