Abstract

An LS(1)-0421 MOD airfoil model was tested in The Ohio State University Aeronautical and Astronautical Research Laboratory (OSU/AARL) 3{times}5 subsonic wind tunnel (3{times}5) under steady flow and stationary model conditions, and also with the model undergoing pitch oscillations. In order to study the possible extent of performance loss due to surface roughness, a leading edge grit roughness (LEGR) pattern was developed to simulate leading edge contamination. After baseline cases were completed, the LEGR was applied for both steady state and model pitch oscillation cases. The Reynolds numbers for steady state conditions were 0.75, 1, and 1.25 million, while the angle of attack ranged from {minus}10{degrees} to +40{degrees}. With the model undergoing pitch oscillations, data was acquired at Reynolds numbers of 0.75, 1, 1.25, and 1.5 million, at frequencies of 0.6, 1.2, and 1.8 Hz. Two sine wave forcing functions were used; {plus_minus} 5.5{degrees} and {plus_minus} 10{degrees}, at mean angles of attack of 8{degrees}, 14{degrees}, and 20{degrees}. For this report, unsteady conditions refer to the model in pitch oscillation. In general, the maximum unsteady lift coefficient was from 10% to 50% higher than the steady state maximum lift coefficient. Variation in the quarter chord pitching moment coefficient was nearly two times greater than steady state values at high angles of attack. These findings indicate the importance of considering the unsteady flow behavior occurring in wind turbine operation for accurate load estimates.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.