Abstract

The increasingly common remedial application of nanoscale zero-valent iron (nZVI) to alleviate specific contaminant issues may inadvertently lead to nZVI accumulation in wastewater. This is a potential concern, because the effect of nZVI on the common microbes essential for wastewater biotreatment is not known. This is further complicated when there are many ways available to synthesize nZVI, which may interreact with bacteria differently. Thus, in this study, the different effects of nZVI synthesized by Eucalyptus leaves (EL-nZVI) and a commercially synthesized nZVI on the biodegradation of crystal violet by Burkholderia vietnamiensis C09V (B.V. C09V) was studied. At high dose (1000 mg/L), EL-nZVI and commercial nZVI both significantly inhibited the removal of crystal violet by B.V. C09V, decreasing removal rates by 10.5 and 13.1% respectively. Optical density (OD600) and soluble protein assays indicated that the growth of B.V. C09V improved under low doses (100 mg/L), but remained inhibited under high doses (500 and 1000 mg/L) of both commercial and EL-nZVI. Enzymes were also sensitive to nZVI, where the commercial variant exerted a greater effect on both the activity of lactate dehydrogenase (LDH) and superoxide dismutase (SOD) than EL-nZVI, indicating that EL-nZVI was less toxic than commercial nZVI. LIVE/DEAD staining also showed that the number of apoptotic cells was significantly higher when exposed to commercial nZVI rather than EL-nZVI. Furthermore, scanning electron microscopy (SEM) confirmed that direct contact between nZVI and cells at 1000 mg/L nZVI caused cell membrane disruption. Whereas, at 100 mg/L EL-nZVI, B.V. C09V grew better due to the formation of dense biofilms around the suspended EL-nZVI at a. Fourier transform infrared spectra (FTIR), confirmed an abundance of oxygen-containing functional groups on the surface of EL-nZVI which provided better biocompatibility than commercial nZVI. Overall, while dose was the most significant factor influencing nZVI toxicity, surface composition and morphology was also important. These new findings suggest chemical synthesis of metal nanoparticles should be replaced by biosynthetic routes to maintain viable microbial pollution during wastewater treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.