Abstract

Rainfall is critical to the regulation of slope runoff and soil water recharge. Grazing affects land cover and soil structure, with consequence on slope runoff generation and soil water recharge. Little attention has been paid to the effects of rainfall on soil water recharge caused by grazing. In this study, we examined land covers and soil water contents under different grazing intensities (G1-G5: 2.2, 3.0, 4.2, 6.7, 16.7 sheep·hm-2) and no grazing sites (NG), aiming to analyze soil water recharge under natural rainfall conditions after grazing. The results showed that grazing exerted significant effects on vegetation and biocrust coverage. The vegetation coverage was decreased by 8.3%-16.4% under G1-G5 grazing, while the biocrust coverage was increased by 106.9% under G2 grazing compared to NG. The soil surface roughness under G1-G5 grazing was increased by 53.1%-152.5%, and the thickness of biocrust was decreased by 24.1% under G5. Soil wetting front velocity decreased with increasing rainfall intensity, and that of 0-5 cm layer under the G2 grazing intensity decreased by 60.0% to 83.3% under rainfall between 18.0 mm and 70.3 mm compared to NG. The effect of grazing on soil wetting front velocity was significantly related to biocrust coverage and soil bulk density of 0-5 cm soil layer. Generally, grazing did not affect soil water recharge rates of the slope grassland on the Loess Plateau. G2 grazing may prolong the migration time of soil water in the surface layer by increasing the coverage of cyanobacteria biocrusts, which may be beneficial to the restoration of soil microenvironment. Our results provided scientific basis for water management in the enclosure grassland of the Loess Plateau in the "post-conversion era".

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call