Abstract

We have simulated the steady state of a stoichiometric neutralisation reaction in a capillary flow reactor. The reactive flow occurs in an upright capillary tube with coaxial inlets in its base, an open top and with adiabatic sidewalls. A dilute solution of 0.100 M alkali or acid is injected vertically upwards through the central inlet. A 0.100 M solution of acid or alkali is also injected vertically upwards into the cylinder through a circular annulus concentric with, and immediately surrounding, the central inlet. Computational fluid dynamics modelling, using the finite-volume method, indicates that gravity has a pronounced effect on both the steady-state flow and on the chemical composition of this flow. Very large deviations from Hagen–Poiseuille flow, proportional to the ratio of the Reynolds number to a modified Froude number, are predicted when gravity is present, even though the densities of the two reactant-streams differ by less than 0.3%. Under terrestrial gravity, both the flow distribution and the steady-state conversion to products at the outlet depend strongly on whether alkali or acid forms the central inlet jet. This dependence becomes very small under microgravity conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.