Abstract

The solitary signal observed in a horizontal granular chain changes its speed and form due to gravity in a vertical chain. We find that all the propagating signals in a vertical chain follow power laws in depth for propagating speed, grain velocity, amplitude, and width. This stems from the power-law type changing of elastic properties in a medium under gravity. The propagation may be separated into two types according to the behavior of the power-law exponents, depending on the strength of the nonlinearity. We show that the power-law exponents are constants in the strength of the impulse in the weakly nonlinear regime, while they depend on the strength of the impulse in the strongly nonlinear regime. We derive power-law exponents for the weakly nonlinear regime analytically and try to understand the behaviors of the strongly nonlinear regime through analytical treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.