Abstract

External loads arising as a result of the orientation of body segments relative to gravity can affect the achievement of movement goals. The degree to which subjects adjust control signals to compensate for these loads is a reflection of the extent to which forces affecting motion are represented neurally. In the present study we assessed whether subjects, when speaking, compensate for loads caused by the orientation of the head relative to gravity. We used a mathematical model of the jaw to predict the effects of control signals that are not adjusted for changes to head orientation. The simulations predicted a systematic change in sagittal plane jaw orientation and horizontal position resulting from changes to the orientation of the head. We conducted an empirical study in which subjects were tested under the same conditions. With one exception, empirical results were consistent with the simulations. In both simulation and empirical studies, the jaw was rotated closer to occlusion and translated in an anterior direction when the head was in the prone orientation. When the head was in the supine orientation, the jaw was rotated away from occlusion. The findings suggest that the nervous system does not completely compensate for changes in head orientation relative to gravity. A second study was conducted to assess possible changes in acoustical patterns attributable to changes in head orientation. The frequencies of the first (F1) and second (F2) formants associated with the steady-state portion of vowels were measured. As in the kinematic study, systematic differences in the values of F1 and F2 were observed with changes in head orientation. Thus the acoustical analysis further supports the conclusion that control signals are not completely adjusted to offset forces arising because of changes in orientation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call