Abstract

Many reports describe overestimation of liquefaction resistance based on sounding data related to ground materials containing coarse particles such as gravel and cobbles. Better methods of liquefaction potential estimation must be developed using investigation data other than those from sounding. Gathering perfect and undisturbed samples is difficult, but using seismic methods such as PS logging might be effective for assessing liquefaction potential. For this study, bender element (BE) tests and local small strain (LSS) tests were conducted, respectively, to measure the dynamic and static shear moduli of gravel – mixed sand specimens. Subsequently, relations between liquefaction strength and secant shear moduli were examined to provide reliable estimation of liquefaction in gravel – mixed sand. Although the liquefaction resistance increased considerably with overconsolidation, the initial shear modulus exhibited only a slight change with the same overconsolidation. The experimentally obtained results elucidated that the important shear strain level, for which secant shear modulus has a strong relation with liquefaction strength, was not a linear elastic region of 0.001%: it was about 0.01%.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call